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Time-to-event Data in Medical Research
Alzheimer’s disease progression

Source: Jack et al. (2013)

• Mild cognitive impairment (MCI) is a common precursor to dementia in
Alzheimer’s disease and is associated with isolated memory loss.

• Some patients with MCI remain stable, whereas others progress to
Alzheimer’s disease.

• For an effective therapy, we want to know the probability of conversion
at any time point.
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Time-to-event Data in Maintenance
Remaining useful life of equipment

Source: MathWorks

• Most equipment, such as a pump, will experience failure eventually.
• Failure is usually determined by threshold values on various censors:
temperature cannot exceed 74◦C and pressure must be under 10 bar.

• We want to know the probability of failure at any time point such that
replacing the equipment can be scheduled in advance to minimize
downtime.
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https://www.mathworks.com/company/newsletters/articles/three-ways-to-estimate-remaining-useful-life-for-predictive-maintenance.html


Time-to-event Data in Economics
Customer relationship management
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Source: For Entrepreneurs

• All businesses will lose some of its customers (customer churn).
• For each customer, we have a record of purchases and previous
interactions with the company.

• We want to know how likely it is for a customer to turn away (churn) at
any given time point so we can provide targeted incentives to induce
customers to stay.
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https://www.forentrepreneurs.com/customer-success/
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Censoring
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• A record is uncensored if an event was observed during the study
period: the exact time of the event is known.

• A record is right censored if a patient remained event-free: it is
unknown whether an event occurred after the study ended.
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Types of Censoring

Let yi denote the observable time, ti the actual time of an event, and ci
the time of censoring.
• Right censoring

yi = min(crighti , ti)

• Left censoring
yi = max(clefti , ti)

• Interval censoring
ti ∈ (τ li ; τ ri ]

• Any combination of left, right, or interval censoring may occur in a study.
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Basic Quantities

Let T denote a continuous non-negative random variable corresponding to
a patient’s survival time with probability density function f(t).

Survival function

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t) =
∫ ∞
t

f(u)du
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Survival and Hazard Function
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h(t) = f(t)
S(t) ; H(t) = − logS(t)
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Discrete Survival Times

Let T be a discrete random variable, which can take on values ti (i ∈ N)
with probability mass function P (T = ti) and ti < tj if and only if i < j.

Survival function

S(t) =
∑
{i|ti>t}

P (T = ti)⇔ P (T = ti) = S(ti−1)− S(ti)
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Maximum Likelihood Optimization

• Assume we have a dataset of d covariates for each of n observations:

D = {(yi,xi)}ni=1

• We want to fit a model with parameters Θ to estimate S(t) – the
probability of survival beyond time t – via maximum likelihood
optimization.

• Observed times yi can be
1. uncensored
2. right-censored
3. left-censored
4. interval-censored

• We need to consider carefully what information each observation
gives us.
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Noninformative Censoring

Definition (Noninformative Censoring)
Usually, we assume that the distribution of survival times T is independent
of the distribution of censoring times C:

T ⊥ C |x

This assumption would be violated if the prognosis of individuals who get
censored is worse compared to those who are not censored.
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Constructing the Likelihood Function

Exact time of event is known

Time t•
yi

argmax
Θ

P (T = yi; Θ |xi) = f(yi; Θ |xi)
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Constructing the Likelihood Function

Time of event is right-censored

Time t•
ci

argmax
Θ

P (T > ci; Θ |xi) = S(ci; Θ |xi)
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Constructing the Likelihood Function

Time of event is left-censored

Time t•
ci

argmax
Θ

P (T ≤ ci; Θ |xi) = 1− S(ci; Θ |xi)
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Constructing the Likelihood Function

Time of event is interval-censored

Time t•
τ li

•
τ ri

argmax
Θ

P (τ li < T ≤ τ ri ; Θ |xi) =
∫ τr

i

τ l
i

f(u; Θ |xi) du

= S(τ li ; Θ |xi)− S(τ ri ; Θ |xi)
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Constructing the Likelihood Function
Putting it all together

For training, we need to solve the optimization problem

argmax
Θ

LL(Θ)

where the likelihood function comprises all of the components

LL(Θ) =
∏

i∈uncensored
f(yi; Θ |xi)∏

i∈right-censored
S(yi; Θ |xi)∏

i∈left-censored
(1− S(yi; Θ |xi))∏

i∈interval-censored

(
S(τ li ; Θ |xi)− S(τ ri ; Θ |xi)

)
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Common Parametric Distributions
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Semiparametric Survival Models

Parametric Models
• Distribution’s parameters are
data-dependent based on
covariates.

• Work extremely well when survival
times follow the chosen
distribution.

• Can easily account for various
censoring schemes.

• Inference is easy.

Semiparametric Models
• Often, we do not know what
distribution we should choose.

• Split the model into 2 parts:
1. part that models influence of

covariates.
2. part that models time.

• Usually only account for
right-censoring.
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Common Semiparametric Linear Models

• Cox’s Proportional Hazards model (Cox PH)

h(t |x) = h0(t) exp
(
x>β

)
⇔ h(t |x)

h0(t) = exp
(
x>β

)

• Accelerated Failure Time model (AFT)

h(t |x) = h0(t exp(−x>β)) exp(−x>β)

• Proportional Odds model

P (T > t |x)
P (T ≤ t |x) = 1− S(t |x)

S(t |x) = 1− S0(t)
S0(t) exp

(
x>β

)
• All models are multiplicative.
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Survival Data

Definition (Survival data)
Right-censored survival data consists of n triplets:
xi ∈ Rd a d-dimensional feature vector.
yi > 0 observed time (time of event or time of censoring).

δi ∈ {0; 1} a boolean event indicator (right censoring).
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Cox’s Proportional Hazards model

• Cox PH is by far the most popular survival model.
• Coefficients can be interpreted in terms of hazard ratio:

h(t |x1, . . . , xj , . . . , xp)
h(t |x1, . . . , xj + 1 , . . . , xp)

= exp
(
βj

)
.

• The hazard ratio is a constant independent of time (proportional hazards
assumption).

• Optimization is easy: baseline hazard function h0(t) can be ignored until
β has been estimated (partial likelihood optimization):

argmax
β

n∑
i=1

δi

x>i β − log

∑
j∈Ri

exp(x>j β)

 ,
where Ri = {j | yj ≥ ti} denotes the risk set.

Sebastian Pölsterl (AI-Med) October 2nd 2018 École Centrale de Nantes 25 of 49



Comparable Pairs

Definition (Set of comparable pairs)

P = {(i, j) | yi > yj ∧ δj = 1}i,j=1,...,n

1 2 3 4 5 6
Time since enrollment in months

A ? (δA = 0)

B † (δB = 1)

C ? (δC = 0)

D † (δD = 1)

E ? (δE = 0)

P = {}
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Concordance Index

• The concordance index (c index) is a measure of rank correlation
between predicted risk scores f̂(x) and observed time points y.

• It is the ratio of correctly ordered (concordant) pairs to comparable pairs:

ĉHarrell = 1
|P|

∑
(i,j)∈P

I(f̂(xi) < f̂(xj)).

• A random model has c index 0.5, a perfect model 1.0
• Risk scores can be on any scale, only their relative ordering matters.
• c index is independent of time.
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Concordance Index
Example

Definition (Concordance index)
1

|P|
∑

(i,j)∈P I(f̂(xi)<f̂(xj))

1 2 3 4 5 6
Time since enrollment in months

A ? (δA = 0)

B † (δB = 1)

C ? (δC = 0)

D † (δD = 1)

E ? (δE = 0)

0.25 0.5 0.75 1
f̂(x)

•
•

•
•

•

P = {(B,D), (C,D), (A,D), (E,D), (E,B)} ⇒ ĉ =?
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Sebastian Pölsterl (AI-Med) October 2nd 2018 École Centrale de Nantes 28 of 49



Concordance Index
Example

Definition (Concordance index)
1

|P|
∑

(i,j)∈P I(f̂(xi)<f̂(xj))

1 2 3 4 5 6
Time since enrollment in months

A ? (δA = 0)

B † (δB = 1)

C ? (δC = 0)

D † (δD = 1)

E ? (δE = 0)

0.25 0.5 0.75 1
f̂(x)

•
•

•
•

•

f̂(xA) < f̂(xD)

P = {(B,D), (C,D), (A,D), (E,D), (E,B)} ⇒ ĉ =?
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Time since enrollment in months

A ? (δA = 0)

B † (δB = 1)

C ? (δC = 0)

D † (δD = 1)

E ? (δE = 0)

0.25 0.5 0.75 1
f̂(x)

•
•

•
•

•

f̂(xE) ≮ f̂(xB)

P = {(B,D), (C,D), (A,D), (E,D), (E,B)} ⇒ ĉ =?
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Concordance Index
Example

Definition (Concordance index)
1

|P|
∑

(i,j)∈P I(f̂(xi)<f̂(xj))

1 2 3 4 5 6
Time since enrollment in months

A ? (δA = 0)

B † (δB = 1)

C ? (δC = 0)

D † (δD = 1)

E ? (δE = 0)

0.25 0.5 0.75 1
f̂(x)

•
•

•
•

•

P = {(B,D), (C,D), (A,D), (E,D), (E,B)} ⇒ ĉ = 3/5
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Gradient Boosting

• Take a linear model and replace the linear predictor x>i β with an
unknown, more complex function f(x).

• We can model f(x) as an additive model by performing gradient descent
in function space (gradient boosting).

• Loss function:
◦ Cox PH (Binder and Schumacher, 2008; Li and Luan, 2005; Ridgeway, 1999)
◦ AFT (Hothorn et al., 2006; Schmid and Hothorn, 2008; Wang and Wang,

2010)
◦ c index (Benner, 2002; Mayr and Schmid, 2014)

• Base learner:
◦ regression tree (Breiman et al., 1984)
◦ componentwise least squares (Bühlmann and Yu, 2003)
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Support Vector Machine

• We can treat survival analysis as ranking problem (Van Belle et al.,
2008).

• We want to optimize a smooth approximation of the c index:

min
w

1
2‖w‖

2
2 + γ

∑
(i,j)∈P

ξij

subject to w>xi −w>xj ≥ 1− ξij , ∀(i, j) ∈ P,
ξij ≥ 0, ∀(i, j) ∈ P

• Optimization algorithm needs to be clever to avoid dependency on kernel
matrix of size O(|P|2) = O(n4) (Pölsterl et al., 2015, 2016).

• Alternative models: regression with non-symmetric loss (Khan and
Zubek, 2008; Shivaswamy et al., 2007), quantile regression (Eleuteri,
2008; Eleuteri and Taktak, 2012).
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Neural Networks

• Faraggi and Simon (1995) proposes a multi-layer perceptron that extends
the Cox PH model.

• Biganzoli et al. (1998) and Liestøl et al. (1994) propose the Partial
Logistic Artificial Neural Network that considers survival times grouped
into mutually exclusive intervals and a loss based on a piecewise
exponential model.
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Loss by Faraggi and Simon

Hidden
layer

Input
layer

Output
layer

Cox
PH loss

argmax
β

n∑
i=1

δi

[
x>

i β

− log

∑
j∈Ri

exp(x>j β)

 ,
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Loss by Faraggi and Simon

Hidden
layer

Input
layer

Output
layer

Cox
PH loss

argmin
Θ

n∑
i=1

δi

[
o(xi |Θ)

− log

∑
j∈Ri

exp( o(xj |Θ) )


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Loss by Faraggi and Simon
Problems

• Samples need to be sorted by observed time yi due to sum over
Ri = {j | yj ≥ ti}.

• Batch size needs to be large, otherwise gradient is very noisy.
• Only considers time-invariant features (proportional hazards
assumption).
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Partial Logistic ANN
Biganzoli et al. (1998) and Liestøl et al. (1994)

The Partial Logistic Artificial Neural Network considers survival times
grouped into mutually exclusive intervals.
τ0 τ1 τ2 τ3

1 2 3 4 5 6
Time since enrollment in months

A ?

B †

C ?

D †

E ?
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Partial Logistic ANN
Biganzoli et al. (1998) and Liestøl et al. (1994)

The Partial Logistic Artificial Neural Network considers survival times
grouped into mutually exclusive intervals.
τ0 τ1 τ2 τ3

1 2 3 4 5 6
Time since enrollment in months

A ?
Event in k-th interval?
δA1 = 0, δA2 = 0, δA3 = 0

Time spent in k-th interval:
ỹA1 = 2, ỹA2 = 1, ỹA3 = 0

B †

C ?

D †

E ?
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Partial Logistic ANN
Biganzoli et al. (1998) and Liestøl et al. (1994)

The Partial Logistic Artificial Neural Network considers survival times
grouped into mutually exclusive intervals.
τ0 τ1 τ2 τ3

1 2 3 4 5 6
Time since enrollment in months

A ?

B †
Event in k-th interval?
δB1 = 0, δB2 = 0, δB3 = 1

Time spent in k-th interval:
ỹB1 = 2, ỹB2 = 2, ỹB3 = 0.5

C ?

D †

E ?
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Partial Logistic ANN
Biganzoli et al. (1998) and Liestøl et al. (1994)

The Partial Logistic Artificial Neural Network considers survival times
grouped into mutually exclusive intervals.
τ0 τ1 τ2 τ3

1 2 3 4 5 6
Time since enrollment in months

A ?

B †

C ?
Event in k-th interval?
δC1 = 0, δC2 = 0, δC3 = 0,

Time spent in k-th interval:
ỹC1 = 2, ỹC2 = 1.5, ỹC3 = 0

D †

E ?
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Partial Logistic ANN
Biganzoli et al. (1998) and Liestøl et al. (1994)

The Partial Logistic Artificial Neural Network considers survival times
grouped into mutually exclusive intervals.
τ0 τ1 τ2 τ3

1 2 3 4 5 6
Time since enrollment in months

A ?

B †

C ?

D †
Event in k-th interval?
δD1 = 1, δD2 = 0, δD3 = 0,

Time spent in k-th interval:
ỹD1 = 2, ỹD2 = 0, ỹD3 = 0

E ?
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Partial Logistic ANN
Biganzoli et al. (1998) and Liestøl et al. (1994)

• A piecewise exponential model has a constant hazard rate λl > 0 in the
l-th interval and has survival function

S(t) = exp(−λl(t− τl−1))
l−1∏
k=1

exp(−λk(τk − τk−1))

• Substituting the definition into the log-likelihood function of a
parametric model, we obtain

argmax
{λ1,...,λL}

n∑
i=1

L∑
k=1

[δik log(λk)− λkỹik]

• Finally, the parameters λk are modeled by a neural network o(xi |Θ)
conditional on feature vectors xi as

λk(xi) = exp( log λ0k︸ ︷︷ ︸
baseline

=bias term

+w>o(xi |Θ))
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Literature Survey

• I could find 24 papers using deep learning1 techniques with a loss
accounting for censored event times.

• 10 use the Cox PH loss of Faraggi and Simon (1995).
• 18 have been applied to medical data.
◦ 8 to medical images (6 of which are on histopathology images).
◦ 4 to genomic data.
◦ The remaining use tabular clinical data or EHR.

1excluding work using Deep Gaussian Processes
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Example 1: Histology + Genomics
Mobadersany et al. (2018)

Mobadersany et al. (2018), “Predicting cancer outcomes from histology and
genomics using convolutional networks”, PNAS.
• Objective: Survival prediction of patients with
diffuse gliomas.

• Network integrates information from both
histology images and genomic biomarkers.

• Uses a modified VGG-19 architecture with loss of
Faraggi and Simon.

• Training and testing use random sampling of
patches from region of interest.

• Genomic markers (IDH mutation status and
1p/19q co-deletion) are integrated as input to
shared FC layer.
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Example 1: Histology + Genomics
Mobadersany et al. (2018)
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Example 2: Web User Return Time
Grob et al. (2018)

Grob et al. (2018), “A RNN Survival Model: Predicting Web User Return
Time”, ECML-PKDD.
• Objective: Predict the return times of users to a website.
• Each user has a sequence of previous sessions.
• Each session is has a start time and a set of features.
• Time T is defined as the period between the end of a session and the
beginning of the succeeding session.

• The hazard function up to the j-th session hj(t) is modeled as a
recurrent marked temporal point process:

hj(t) = exp

v(t)hj︸ ︷︷ ︸
past

+w(t− tj)︸ ︷︷ ︸
temporal

+ b(t)︸︷︷︸
bias


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Example 2: Web User Return Time
Grob et al. (2018)

Baseline Cox PH RNN-MSE RNN-SM

RMSE (days) 43.25 49.99 28.69 59.99
Concordance 0.500 0.816 0.706 0.739
Non-returning AUC 0.743 0.793 0.763 0.796
Non-returning recall 0.000 0.246 0.000 0.538
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Conclusion

• Time-to-event analysis is applicable across a wide range of domains.
• It is a well studied topic in statistics.
• Most classical machine learning models have been modified for
time-to-event data.

• It is slowly being adapted by the deep learning community, although
most of the approaches are rather naive.

• Cox PH model is surprisingly hard to beat.
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