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Alzheimer’s Disease Diagnosis

27%

Tabular Biomarkers

3D Hippocampus
Shape

Neural Network
Probability
of Dementia

• Assume we have successfully trained a DNN f to accurately predict AD diagnosis from the
hippocampus shape and tabular biomarkers of an individual:

f : RK×3 × RD → [0; 1].
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Explainable Artificial Intelligence (XAI)

• Predictions by a DNN are opaque, therefore we require
post-hoc explainability techniques.

• Our objective:
inform the user about the decision making process.

Why did the DNN
predict a prob-
ability of 27% for
patient A?
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XAI in Alzheimer’s Disease

27%

Tabular Biomarkers

3D Hippocampus
Shape

Neural Network
Probability
of Dementia

• The input data are heterogeneous.
• Point clouds are non-Euclidean.
• Requires networks that differ substantially from standard CNNs.
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Axioms of an Explanation

Comp-
leteness

Null
Player Symmetry Scale

Invariance Linearity Continuity Implement.
Invariance

Occlusion
(Zeiler and Fergus, 2014) 7 3 3 3 3 7 3

Guided Grad-CAM
(Selvaraju et al., 2017) 7 3 3 3 3 7 3

Layer-wise relevance prop.
(Bach et al., 2015) 3 3 3 3 3 3 7

DeepLift
(Shrikumar et al., 2017) 3 3 3 3 3 3 7

Integrated Gradients
(Sundararajan, Taly, et al.,
2017)

3 3 3 3 3 7 3

Shapley Value
(Shapley, 1953) 3 3 3 3 3 3 3

See Ancona et al. (2019), Montavon (2019), and Sundararajan, Taly, et al. (2017) for proofs.
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Shapley Value (Shapley, 1953)

Definition (Shapley Value)

si(z | f) = 1
|F|!

∑
S ⊆ F\{i}

|S|! · (|F| − |S| − 1)![ g(S ∪ {i}) − g(S)︸ ︷︷ ︸
=∆i

].

• Average over all subsets S ⊆ F\{i} (F comprises all features of the input z).
• g(S)measures the impact of feature set S (Sundararajan and Najmi, 2020):

g(S) = f(zS ; zbl
F\S)− f(zbl), zbl

F\S : Replace features /∈ S with a baseline value.

• Shapley value scales exponentially in the number of features.
⇒ Need to approximate it.
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Estimation of Shapley Value
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Wide and Deep Network proposed in Pölsterl et al. (2020).

� Tabular feature: only depends on the i-th weight of the last linear layer.
� Point of the hippocampus: depends on the entire PointNet.
⇒ Need to approximate the Shapley value.
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Approximate Shapley Value (Fatima et al., 2008)

• Explicitly sum over all sets S of equal size to obtain linear runtime:

si(z | f) = 1
|F|!

|F|−1∑
k=0

∑
S⊆F\{i}
|S|=k

k!(|F| − k − 1)! ·∆i

≈ 1
|F|

|F|−1∑
k=0

Ek(∆i)

• Only need to estimate Ek(∆i):

Ek(∆i) = Ek[f(zS∪{i}; zbl
F\S∪{i})]− Ek[f(zS ; zbl

F\S)].
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Shapley Values of Anatomical Shape

Objective:
• Estimate Ek[f(zS ; zbl

F\S)].

Problem:
� f(zS ; zbl

F\S) depends on the entire PointNet.

Solution:
• Represent output of first layer as a normal distribution.
• The objective becomes propagating aleatoric uncertainty.
• Transform remaining layers into a Lightweight Probabilistic Deep Network (Gast and

Roth, 2018).
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Normal Approximation (I)
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• Objective: Estimate Ek[f(zS ; zbl
F\S)].

• First PointNet layer yields hj =
(∑3

l=1 pjlWl 1, . . . ,
∑3

l=1 pjlWl 64
)>

.

• Whether j ∈ S is random, we only know |S| = k.
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Normal Approximation (II)

Objective:
◦ Approximate output of first layer with a normal
distribution.

Solution:
◦ Sampling theory suggests approximation with a normal
distribution (Ancona et al., 2019; Cochran, 1977):

Ek[hjm] = k

|F|
hjm,

Vk(hjm) = k
|F| − k

|F| − 1

[
1
|F|

3∑
l=1

(pjlWlm)2 −
( 1
|F|

hjm

)2
]

.
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𝒑𝐾

…
…

𝓟

Anatomical
shape

Size k of set 𝘚
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Propagating Aleatoric Uncertainty

• Outputs of first layer are approximated by independent normal distributions.
• Propagate distributions using a Lightweight Probabilistic Deep Network (Gast and Roth,

2018).
• Replace layers with their probabilistic counterpart:
ReLU, batch-norm, and max-pooling, fully-connected.
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Efficient Shapley Value Estimation

𝒑1

𝒑𝑗

𝒑𝐾

…
…

𝓟

Anatomical
shape

Normal Approx. Layer 1
(shared)

Layer 2
(shared)

Layer 3
(shared)

M
ax

Po
ol

in
g

Lightweight Probabilistic
PointNet

Ek[f(zS ; zbl
F\S)]

• Require 2|F| forward passes:

si(z | f) ≈ 1
|F|

|F|−1∑
k=0

Ek[f(zS∪{i}; zbl
F\S∪{i})]︸ ︷︷ ︸

Output of LPDN

− Ek[f(zS ; zbl
F\S)]︸ ︷︷ ︸

Output of LPDN

.

• Runtime: O(|F|).
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Experiments

1. Quantitative evaluation on synthetic data.
2. Qualitative evaluation on data from the Alzheimer’s Disease Neuroimaging Initiative.
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Experiments – Alzheimer’s Disease Diagnosis

• Data: T1 MRI from the Alzheimer’s Disease Neuroimaging Initiative (Jack et al., 2008).
• Network: Wide and Deep PointNet (Pölsterl et al., 2020).
• Anatomical shape: Left hippocampus point cloud (1024 points).
• Tabular data:
◦ 9 features (demographics, APOE4, CSF, AV45-PET, FDG-PET).
◦ Explicitly encode missing values via indicator variables.

• Balanced accuracy: 0.942 on the test data.
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Shapley Values of 167 Correctly Classified Patients
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Shapley Values of Individual Patient

2 2 4 6 8 10 12
Shapley value

Age = 81.284
Education = 20

A 42 = 448.2
Male = 1

APOE4 = 1
t-tau = 424

AV45-PET = 1.539
FDG-PET = 0.995

p-tau = 43.51
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+1.44

+1.27
1.3

f(P, x) f(Pbl, xbl) = 12.264
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Shapley Values of Hippocampus
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Conclusion

• An axiomatic approach based on the Shapley value to explain predictions of a DNN.
• Approximation of the Shapley value requires a quadratic (instead of exponential) number of
network evaluations.

• Explain Alzheimer’s diagnosis of a DNN from anatomical shape and tabular biomarkers.
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Thanks For Your Attention!

R sebastian.poelsterl@med.uni-muenchen.de

� www.ai-med.de

� github.com/ai-med
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u Lab for AI in Medical Imaging

Founding sources: Bavarian State Ministry of Science and the Arts, Federal Ministry of Education and Research.
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