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Survival Analysis

Objective: to establish a connection between a set of features and the time
between the start of the study and an event.

Usually, parts of training and test data can only be partially observed — they
are censored.

The survival support vector machine (SSVM) formulates survival analysis
as a ranking-to-rank problem.

Survival data consists of n triplets:
- x; € RP a p-dimensional feature vector
- y; = min(¢;,¢;) time of event (t) or time of censoring (c)

-6, = I1(t; < ¢;) eventindicator
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* Only events that occur while the study is running can be recorded (records
are uncensored).

* For individuals that remained event-free during the study period, it is
unknown whether an event has or has not occurred after the study ended

(records are right censored).
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Kernel Survival Support Vector Machine

The survival support vector machine (SSVM) is an extension of the Rank
SVM to right censored survival data (Herbrich et al., 2000; Van Belle et al.,
2007; Evers et al., 2008):

- Rank patients with a lower survival time before patients with longer
survival time.

Objective function: P = {(:,7) | y;i > y; A6; = 1}],4

, 1
min §||fw||§ + Z max(0,1 —w ' (¢(x;) — p(x;)))
(i,j)eP
Lagrange dual problem with K; ; = ¢(x;) ' ¢(x;) :
1

max o' 1, — §aTAKATa
(8%

subject to 0 < a;; <7, V(i,j)€ P,

where A, ; =1and A, ,; = —1if (i,j) € P and 0 otherwise.
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Training the Kernel SSVM

 Problem: For a dataset with n samples and p features, previous training
algorithms require O(n*) space and O(pn°) time.

* Recently, an efficient training algorithm for linear SSVM with much lower
time complexity and linear space complexity has been proposed (Polsterl et
al., 2015).

« We extend this optimisation scheme to the non-linear case and show
that it allows analysing large-scale data with no loss in prediction
performance.
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Proposed Optimisation Scheme

The form of the optimisation problem is very similar to the one of linear SSVM,
which allows applying many of the ideas employed in its optimisation

» Substitute hinge loss for differentiable squared hinge

 Perform optimisation in the primal rather than the dual
— Directly apply the representer theorem (Kuo et al., 2014)
- Use truncated Newton optimisation (Dembo and Steihaug, 1983)

— Use order statistic trees to avoid explicitly constructing all pairwise
comparisons of samples, i.e., storing matrix A (PoOlsterl et al., 2015)
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Objective Function (1)

Find a function f: X — R from a reproducing Kernel Hilbert space H with
k: X xX — R (usually X C RP):

min %HfH?{k + % > max(0,1— (f(z:) — f(=)))

feEHK
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Objective Function (2)

Apply representer theorem to express f(z)as f(z) = >_._, B:k(x;, z), where
3 € R™ are the coefficients (Kuo et al., 2014).

min R(8)  min 5|13, +2 3 max(0,1 - (7@:) - f(z,)?
(i,7)eP

:% Z Zﬁzﬂjk(%a ;)

i=1 j=1
2
—|-— Z max <O 1—251 (7, ;) (wlawj))>
(ZJ)EP
:5ﬁ7K5+§(1m—AK6) Dg (1, — AKpB)
1 lff(wj)>f($z)—1(:)K]5>Kzﬁ_lv

0 else.

(Dg)kk = {
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Truncated Newton Optimisation (1)

Problem: Explicitly storing the Hessian matrix can be prohibitive for large-
scale survival data.

Avoid constructing Hessian matrix by using truncated Newton optimization,
which only requires computation of Hessian-vector product (Dembo and
Steihaug, 1983).

Hessian:

0’R(B)
08037

H = = K +7KA3AgK  (with AjAg = A" DgA)

Hessian-vector product:

(If +17))Kv — (0] +07)
Hv=Kv+7KAjAgKv = Kv+7K ;
Uy + 1)Ky — (o) +0,,)
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Truncated Newton Optimisation (2)

Hessian-vector product:
(If +17))Kv — (0] +07)
Hv=Kv+vK :
(U + 1) Knv = (o) +0y,)

where in analogy to linear SSVM

SV ={s|ys > AKB<KB+1A5 =1}, If =|SVS|, of= > K

SV, ={s|ys <y \K ;B> K;B—1A6,=1}, 17 =|SV;|, o7 = ) K,
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Truncated Newton Optimisation (2)

Hessian-vector product:

(If +17))Kv — (0] +07)
Hv=Kv+vK :
(U + 1) Knv = (o) +0y,)

where in analogy to linear SSVM

SV ={s|ys > ANKB<KB+1A5 =1}, |[If =|SVS|, o= > K
SESV,—J_

SV ={s|ys <y \K ;B> K;B—116,=1}, |7 =|SV;|, o7 = ) K.
seSV -

Can be computed in logarithmic time by first sorting by predlcted scores f(x;) = K;3

and incrementally constructing order statistic trees to hold SV and SV (Pdlsterl et
., 2015).
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Complexity Analysis

Assuming the kernel matrix K cannot be stored in memory and evaluating
the kernel function costs O(p)

Computing the Hessian-vector product during one iteration of truncated
Newton optimisation requires

1) O(n°p) to compute K ;v for all i
2) O(nlogn) to sort samples according to values of K ;v
3) O(n2 + n 4+ nlogn) to calculate the Hessian-vector product

e Overall (if kernel matrix is stored in memory):

O(nQp) - [O(n logn) + O(n2 +n + nlog n)} - Noa + NNewton
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Complexity Analysis

Assuming the kernel matrix K cannot be stored in memory and evaluating
the kernel function costs O(p)

Computing the Hessian-vector product during one iteration of truncated
Newton optimisation requires

1) O(n°p) to compute K ;v for all i
2) O(nlogn) to sort samples according to values of K ;v
3) O(n2 + n 4+ nlogn) to calculate the Hessian-vector product

e Overall (if kernel matrix is stored in memory):

O(nQp) - [O(n logn) + O(n2 +n + nlog n)} - Noa - NNowton

Constructing the kernel matrix is the bottleneck
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Experiments

Synthetic data: 100 pairs of train and test data of 1,500 samples with about
20% of samples right censored in the training data

Real-world datasets: 5 datasets of varying size, number of features, and
amount of censoring

Models:

Simple SSVM with hinge loss and P restricted to pairs (i, j), where j is the
largest uncensored sample with y; > y; (Van Belle et al, 2008),

Minlip survival model (Van Belle et al., 2011),
linear SSVM (Palsterl et al., 2015),
Cox’s proportional hazards model with /5 penalty (Cox, 1972).

Kernels:

RBF kernel

Clinical kernel (Daemen et al., 2012)
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Experiments — Real-world Data

SSVM  SSVM  Minlip | SSVM Cox
(ours)  (simple) (linear)
AIDS study Harrel's ¢ 0.759 0.682 0.729 0.767 0.770
(91.7% censored) Uno's ¢ 0.711 0.621  0.560 0.659  0.663
IAUC 0.759 0.685 0.724 | 0.766 0.771
Coronary artery disease Harrel's ¢ 0.739 0.645 0.698 0.706  0.768
(86.5% censored) Uno's ¢ 0.780 0.751  0.745 0.730 0.732
IAUC 0.753 0.641 0.703 0.716  0.777
Framingham offspring Harrel's ¢ 0.778 0.707 0.786 0.780 0.785
(76.2% censored) Uno's ¢ 0.732 0.674 0724 | 0.699 0.742
IAUC 0.827 0.742 0.837 0.829 0.832
Lung cancer Harrel's ¢ 0.676 0.605 0.719 0.716  0.716
(6.6% censored) Uno's ¢ 0.664 0.605 0.716 0.709 0.712
IAUC 0.740 0.630 0.790 0.783  0.780
WHAS Harrel's ¢ 0.768 0.724 0.774 0.770  0.770
(57% censored) Uno's ¢ 0.772 0730 0.778 | 0.775 0.773
IAUC 0.799 0.749 0.801 0.796  0.796

20
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Conclusion

We proposed an efficient method for training non-linear ranking-based
survival support vector machines

Our algorithm is a straightforward extension of our previously proposed
training algorithm for linear survival support vector machines

Our optimisation scheme allows analysing datasets of much larger size than
previous training algorithms

Our optimisation scheme is the preferred choice when learning from survival
data with high amounts of right censoring
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Thanks for your attention!

Implementation in Python @
https://github.com/tum-camp/survival-support-vector-machine/
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