

Computer Aided Medical Procedures

Fast Training of Support Vector Machines for Survival Analysis

Sebastian Pölsterl¹, Nassir Navab^{1,2}, and Amin Katouzian¹

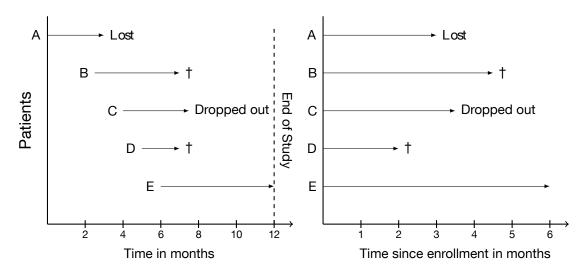
1: Technische Universität München, Munich, Germany

2: Johns Hopkins University, Baltimore MD, USA

Survival Analysis

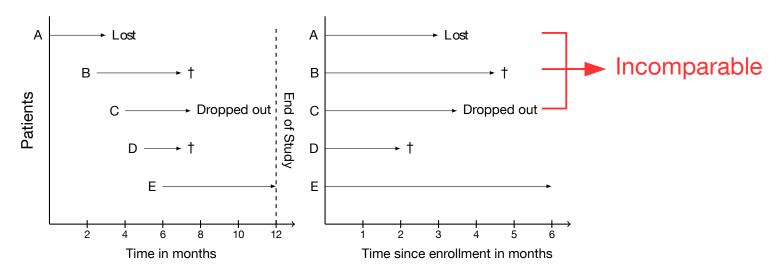
- Objective: to establish a connection between covariates and the time between the start of the study and an event.
- Possible formulation: Rank subjects according to observed survival time.
- Usually, parts of survival data can only be partially observed – they are censored.
- Survival data consists of n triplets:
 - $oldsymbol{x}_i \in \mathbb{R}^d$ a $oldsymbol{d}$ -dimensional feature vector
 - $-y_i > 0$ time of event *or* time of censoring
 - $\delta_i \in \{0,1\}$ event indicator

Right Censoring



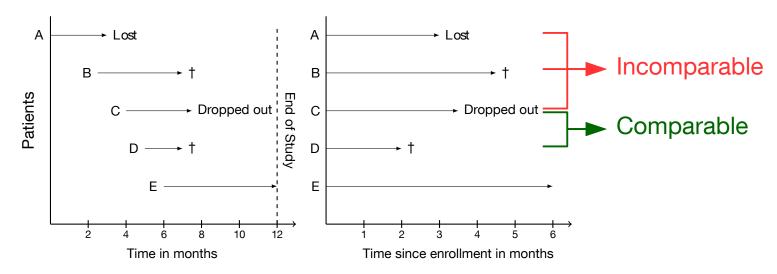
- Only events that occur while the study is running can be recorded (records are uncensored).
- For individuals that remained event-free during the study period, it is unknown whether an event has or has not occurred after the study ended (records are right censored).

Right Censoring



- Only events that occur while the study is running can be recorded (records are uncensored).
- For individuals that remained event-free during the study period, it is unknown whether an event has or has not occurred after the study ended (records are right censored).

Right Censoring



- Only events that occur while the study is running can be recorded (records are uncensored).
- For individuals that remained event-free during the study period, it is unknown whether an event has or has not occurred after the study ended (records are right censored).

Overview

Problem:

 Naive training algorithms for linear Survival Support Vector Machines require O(n⁴) time and O(n²) space (Van Belle et al., 2007; Evers et al., 2008).

Proposed Solution:

- Perform optimization in the primal using truncated Newton optimization.
- Use order statistics trees to lower time and space requirements.
- Approach extends to hybrid ranking-regression objective function as well as non-linear Survival SVM.

Survival SVM

 Objective function depends on a quadratic number of pairwise comparisons

$$\mathcal{P} = \{(i, j) \mid y_i > y_j \land \delta_j = 1\}_{i, j = 1, ..., n}$$
$$f(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2 + \frac{\gamma}{2} \sum_{i, j \in \mathcal{P}} \max(0, 1 - \mathbf{w}^T (\mathbf{x}_i - \mathbf{x}_j))^2$$

 Closely related to RankSVM (Herbrich et al., 2000), where

$$\mathcal{P} = \{(i,j) \mid q_i = q_j \land y_i > y_j\}_{i,j=1,...,n}$$

 Ties in survival time are not common, i.e., number of relevance levels r for RankSVM is O(n).

Related Work – Survival SVM

 Van Belle et al., 2007: Explicitly construct all pairwise comparisons of samples to transform ranking problem into classification problem and use standard dual SVM solver.

$$O(dn^4)$$

 Van Belle et al., 2008: Reduces number of samples n by clustering data according to survival times using knearest neighbor search.

$$O(d\tilde{n}^4) \qquad \tilde{n} < n$$

Related Work – Rank SVM

 Airola et al., 2011: Combines cutting plane optimization with red-black tree based approach to subgradient calculations.

$$O(nd + n\log n + d + nr)$$

 Lee et al., 2014: Combines truncated Newton optimization with order statistics trees to compute gradient and Hessian.

$$O(nd + n\log n + d + n\log r)$$

The Objective Function (1)

$$f(\boldsymbol{w}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \frac{\gamma}{2} \sum_{i,j \in \mathcal{P}} \max(0, 1 - (\boldsymbol{w}^T \boldsymbol{x}_i - \boldsymbol{w}^T \boldsymbol{x}_j))^2$$
(1)

$$= \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \frac{\gamma}{2} \left(p_w + \boldsymbol{w}^T \boldsymbol{X}^T \left(\boldsymbol{A}_{\boldsymbol{w}}^T \boldsymbol{A}_{\boldsymbol{w}} \boldsymbol{X} \boldsymbol{w} - 2 \boldsymbol{A}_{\boldsymbol{w}}^T \right) \right)$$
(2)

- A_w is a $p_w \times n$ sparse matrix with each row having one entry that is 1, one entry that is -1, and the remainder all zeros.
- p_{w} denotes the number of support vectors:

$$p_{w} = |\{(i, j) \in \mathcal{P} \mid w^{T}x_{j} > w^{T}x_{i} - 1\}|$$

The Objective Function (2)

- A_w is a $p_w \times n$ sparse matrix with each row having one entry that is 1, one entry that is -1, and the remainder all zeros.
- For some $s \in \{1, \ldots, n\}$, $k \in \{1, \ldots, p_w\}$ and $q \in \{1, \ldots, n\}$,

$$(\boldsymbol{A}_{\boldsymbol{w}})_{k,q} = egin{cases} 1 & \text{if } y_q < y_s \wedge \delta_q = 1 \wedge \boldsymbol{w}^T \boldsymbol{x}_s < \boldsymbol{w}^T \boldsymbol{x}_q + 1, \\ -1 & \text{if } y_q > y_s \wedge \delta_s = 1 \wedge \boldsymbol{w}^T \boldsymbol{x}_s > \boldsymbol{w}^T \boldsymbol{x}_q - 1, \\ 0 & \text{else.} \end{cases}$$

• Example: $\mathcal{P} = \{(i,j) \mid y_i > y_j \land \delta_j = 1\} = \{(1,2); (1,3); (2,3); (4,2); (4,3)\}$

Truncated Newton Optimization

- Problem: Explicitly storing the Hessian matrix can be prohibitive for high-dimensional survival data.
- Proposed Solution:
 - Optimization in primal.
 - Avoid constructing Hessian matrix by using truncated Newton optimization, which only requires computation of Hessian-vector product:

$$\boldsymbol{H}\boldsymbol{v} = \boldsymbol{v} + \gamma \boldsymbol{X}^T \boldsymbol{A}_{\boldsymbol{w}}^T \boldsymbol{A}_{\boldsymbol{w}} \boldsymbol{X} \boldsymbol{v}$$

Calculation of Search Direction (1)

• In each iteration of Newton's method, $A_{m w}$ has to be recomputed due to its dependency on m w

$$(\boldsymbol{A}_{\boldsymbol{w}})_{k,q} = \begin{cases} 1 & \text{if } y_q < y_s \wedge \delta_q = 1 \wedge \boldsymbol{w}^T \boldsymbol{x}_s < \boldsymbol{w}^T \boldsymbol{x}_q + 1 \\ -1 & \text{if } y_q > y_s \wedge \delta_s = 1 \wedge \boldsymbol{w}^T \boldsymbol{x}_s > \boldsymbol{w}^T \boldsymbol{x}_q - 1 \\ 0 & \text{else} \end{cases}$$
 (1)

$$(\boldsymbol{A}_{\boldsymbol{w}})_{k,i} \cdot (\boldsymbol{A}_{\boldsymbol{w}})_{k,j} = \begin{cases} 1 & \text{if } i = j, \ (\boldsymbol{A}_{\boldsymbol{w}})_{k,i} = (\boldsymbol{A}_{\boldsymbol{w}})_{k,j} = 1, \\ & \text{and (1) holds for } q = i, \end{cases}$$

$$1 & \text{if } i = j, \ (\boldsymbol{A}_{\boldsymbol{w}})_{k,i} = (\boldsymbol{A}_{\boldsymbol{w}})_{k,j} = -1,$$

$$\text{and (2) holds for } q = i,$$

$$\dots$$

Calculation of Search Direction (2)

• In each iteration of Newton's method, A_{w} has to be recomputed due to its dependency on w

$$(\boldsymbol{A}_{\boldsymbol{w}})_{k,q} = \begin{cases} 1 & \text{if } y_q < y_s \wedge \delta_q = 1 \wedge \boldsymbol{w}^T \boldsymbol{x}_s < \boldsymbol{w}^T \boldsymbol{x}_q + 1 \\ -1 & \text{if } y_q > y_s \wedge \delta_s = 1 \wedge \boldsymbol{w}^T \boldsymbol{x}_s > \boldsymbol{w}^T \boldsymbol{x}_q - 1 \\ 0 & \text{else} \end{cases}$$
 (1)

$$(\mathbf{A}_{\boldsymbol{w}})_{k,i} \cdot (\mathbf{A}_{\boldsymbol{w}})_{k,j} = \begin{cases} \cdots \\ -1 & \text{if } i \neq j, \ (\mathbf{A}_{\boldsymbol{w}})_{k,i} = 1, (\mathbf{A}_{\boldsymbol{w}})_{k,j} = -1, \\ & \text{and } (1) \text{ holds for } q = i, s = j \end{cases}$$

$$\Leftrightarrow (2) \text{ holds for } q = j, s = i,$$

$$-1 & \text{if } i \neq j, \ (\mathbf{A}_{\boldsymbol{w}})_{k,i} = -1, (\mathbf{A}_{\boldsymbol{w}})_{k,j} = 1,$$

$$\text{and } (1) \text{ holds for } q = j, s = i,$$

$$\Leftrightarrow (2) \text{ holds for } q = i, s = j$$

Calculation of Search Direction (3)

• $(A_{m{w}}^T A_{m{w}})_{i,j}$ can compactly be expressed as:

$$(\boldsymbol{A}_{\boldsymbol{w}}^{T}\boldsymbol{A}_{\boldsymbol{w}})_{i,j} = \begin{cases} l_{i}^{+} + l_{i}^{-} & \text{if } i = j, \\ -1 & \text{if } i \neq j, \text{ and } j \in SV_{i}^{+} \text{ or } i \in SV_{j}^{-}, \\ 0 & \text{else}, \end{cases}$$

$$SV_{i}^{+} = \{ s \mid y_{s} > y_{i} \wedge \boldsymbol{w}^{T}\boldsymbol{x}_{s} < \boldsymbol{w}^{T}\boldsymbol{x}_{i} + 1 \wedge \delta_{i} = 1 \}$$

$$SV_{i}^{-} = \{ s \mid y_{s} < y_{i} \wedge \boldsymbol{w}^{T}\boldsymbol{x}_{s} > \boldsymbol{w}^{T}\boldsymbol{x}_{i} - 1 \wedge \delta_{s} = 1 \}$$

$$l_{i}^{+} = |SV_{i}^{+}|$$

$$l_{i}^{-} = |SV_{i}^{-}|$$

Calculation of Search Direction (4)

$$H\mathbf{v} = \mathbf{v} + \gamma \mathbf{X}^{T} \mathbf{A}_{\mathbf{w}}^{T} \mathbf{A}_{\mathbf{w}} \mathbf{X} \mathbf{v}$$

$$(\mathbf{A}_{\mathbf{w}}^{T} \mathbf{A}_{\mathbf{w}} \mathbf{X} \mathbf{v})_{i} = (l_{i}^{+} + l_{i}^{-}) \mathbf{x}_{i}^{T} \mathbf{v} - \sum_{s \in \text{SV}_{i}^{+}} \mathbf{x}_{s} \mathbf{v} - \sum_{s \in \text{SV}_{i}^{-}} \mathbf{x}_{s} \mathbf{v}$$

$$= (l_{i}^{+} + l_{i}^{-}) \mathbf{x}_{i}^{T} \mathbf{v} - \sigma_{i}^{+} - \sigma_{i}^{-}.$$

- Assume that l_i^+ , l_i^- , σ_i^+ , and σ_i^- have been computed.
- Hessian-vector product can be computed in O(nd+d) instead of O(nd+p+d)

Problem: Order depends on survival times and predicted scores

$$SV_i^+ = \{s \mid y_s > y_i \wedge \boldsymbol{w}^T \boldsymbol{x}_s < \boldsymbol{w}^T \boldsymbol{x}_i + 1 \wedge \delta_i = 1\}$$

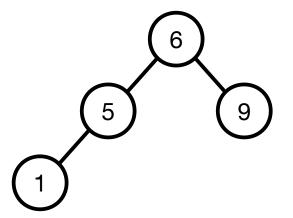
- Solution:
 - Sort survival data according to $oldsymbol{w}^T oldsymbol{x}_i$.
 - Incrementally add y_i and $w^T x_i$ to an order statistics tree (balanced binary search tree).

$$SV_{i+1}^+ = \{s | \boldsymbol{w}^T \boldsymbol{x}_s < \boldsymbol{w}^T \boldsymbol{x}_i + 1\}$$

$$\cup \{s | \boldsymbol{w}^T \boldsymbol{x}_i + 1 \leq \boldsymbol{w}^T \boldsymbol{x}_s < \boldsymbol{w}^T \boldsymbol{x}_{i+1} + 1 \land \delta_{i+1} = 1\}$$

$$SV_i^+ = \{s \mid y_s > y_i \land \underline{\boldsymbol{w}}^T \boldsymbol{x}_s < \underline{\boldsymbol{w}}^T \boldsymbol{x}_i + 1 \land \underline{\delta_i = 1}\}$$

$i \mid$	1	2	3	4	5	6	7	8	9
$oxed{w^T x_i}$	-0.7	-0.1	0.15	0.2	0.3	0.8	1.6	1.7	2.3
$y_i \mid$	1	9	6	5	8	2	7	3	4
$egin{bmatrix} oldsymbol{w}^T oldsymbol{x}_i \ y_i \ \delta_i \ \end{pmatrix}$	0	0	1	0	1	1	1	0	0

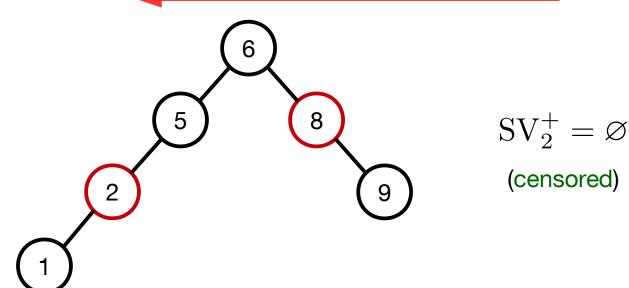


$$SV_1^+ = \varnothing$$

(censored)

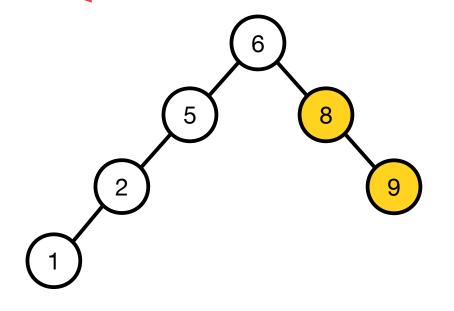
$$SV_i^+ = \{s \mid y_s > y_i \land \underline{\boldsymbol{w}}^T \boldsymbol{x}_s < \underline{\boldsymbol{w}}^T \boldsymbol{x}_i + 1 \land \underline{\delta_i = 1}\}$$

i	1	2	3	4	5	6	7	8	9
$oldsymbol{w}^Toldsymbol{x}_i$	-0.7	-0.1	0.15	0.2	0.3	0.8	1.6	1.7	2.3
y_i	1	9	6	5	8	2	7	3	4
$egin{array}{c} oldsymbol{w}^T oldsymbol{x}_i \ y_i \ \delta_i \end{array}$	0	0	1	0	1	1	1	0	0



$$SV_i^+ = \{s \mid \underline{y_s > y_i} \land \underline{\boldsymbol{w}}^T \boldsymbol{x}_s < \underline{\boldsymbol{w}}^T \boldsymbol{x}_i + 1 \land \delta_i = 1\}$$

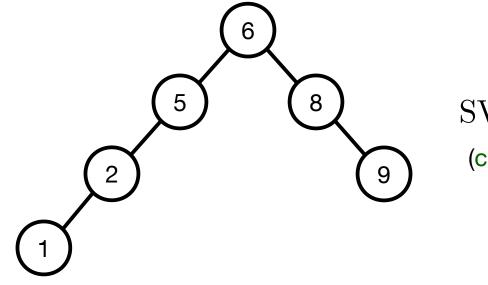
i	1	2	3	4	5	6	7	8	9
$oldsymbol{w}^Toldsymbol{x}_i$	-0.7	-0.1	0.15	0.2	0.3	0.8	1.6	1.7	2.3
y_i	1	9	6	5	8	2	7	3	4
$egin{array}{c} oldsymbol{w}^T oldsymbol{x}_i \ y_i \ \delta_i \end{array}$	0	0	1	0	1	1	1	0	0



$$SV_3^+ = \{2, 5\}$$

$$SV_i^+ = \{s \mid y_s > y_i \land \underline{\boldsymbol{w}}^T \boldsymbol{x}_s < \underline{\boldsymbol{w}}^T \boldsymbol{x}_i + 1 \land \underline{\delta_i = 1}\}$$

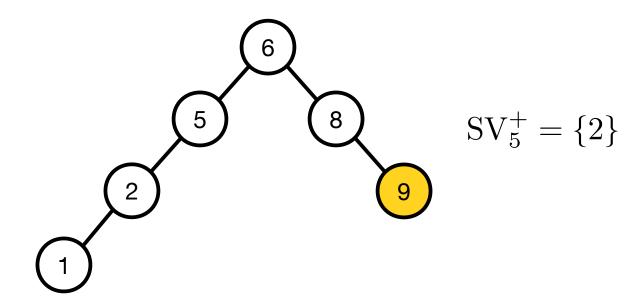
i	1	2	3	4	5	6	7	8	9
$oldsymbol{w}^Toldsymbol{x}_i$	-0.7	-0.1	0.15	0.2	0.3	0.8	1.6	1.7	2.3
y_i	1	9	6	5	8	2	7	3	4
$egin{array}{c} oldsymbol{w}^T oldsymbol{x}_i \ y_i \ \delta_i \ \end{array}$	0	0	1	0	1	1	1	0	0



$$\mathrm{SV}_4^+ = \varnothing$$
 (censored)

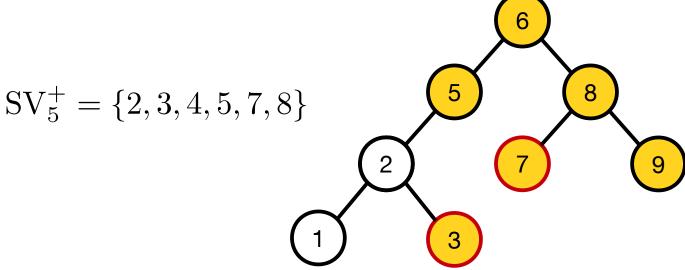
$$SV_i^+ = \{s \mid \underline{y_s > y_i} \land \underline{\boldsymbol{w}}^T \boldsymbol{x}_s < \underline{\boldsymbol{w}}^T \boldsymbol{x}_i + 1 \land \delta_i = 1\}$$

i	1	2	3	4	5	6	7	8	9
$oldsymbol{w}^Toldsymbol{x}_i$	-0.7	-0.1	0.15	0.2	0.3	0.8	1.6	1.7	2.3
y_i	1	9	6	5	8	2	7	3	4
$egin{array}{c} oldsymbol{w}^T oldsymbol{x}_i \ y_i \ \delta_i \end{array}$	0	0	1	0	1	1	1	0	0



$$SV_i^+ = \{s \mid y_s > y_i \land \boldsymbol{w}^T \boldsymbol{x}_s < \boldsymbol{w}^T \boldsymbol{x}_i + 1 \land \delta_i = 1\}$$

			3						
$oldsymbol{w}^Toldsymbol{x}_i$	-0.7	-0.1	0.15	0.2	0.3	0.8	1.6	1.7	2.3
y_i	1	9	6	5	8	2	7	3	4
$egin{array}{c} oldsymbol{w}^T oldsymbol{x}_i \ y_i \ \delta_i \end{array}$	0	0	1	0	1	1	1	0	0



Efficient Hessian-vector Product

• **Before**: Hessian-vector product required O(nd + d + p)

$$\boldsymbol{H}\boldsymbol{v} = \boldsymbol{v} + \gamma \boldsymbol{X}^T \boldsymbol{A}_{\boldsymbol{w}}^T \boldsymbol{A}_{\boldsymbol{w}}^T \boldsymbol{X} \boldsymbol{v}$$
$$(\boldsymbol{A}_{\boldsymbol{w}}^T \boldsymbol{A}_{\boldsymbol{w}} \boldsymbol{X} \boldsymbol{v})_i = (l_i^+ + l_i^-) \boldsymbol{x}_i^T \boldsymbol{v} - \sigma_i^+ - \sigma_i^-.$$

- Now: After sorting according to predicted scores, l_i^+ , l_i^- , σ_i^+ , and σ_i^- can be obtained in $O(\log n)$
- Hessian-vector product does not require constructing matrix of size $O(n^2)$ anymore
- Hessian-vector product requires $O(nd + d + n \log n)$

Overall Complexity

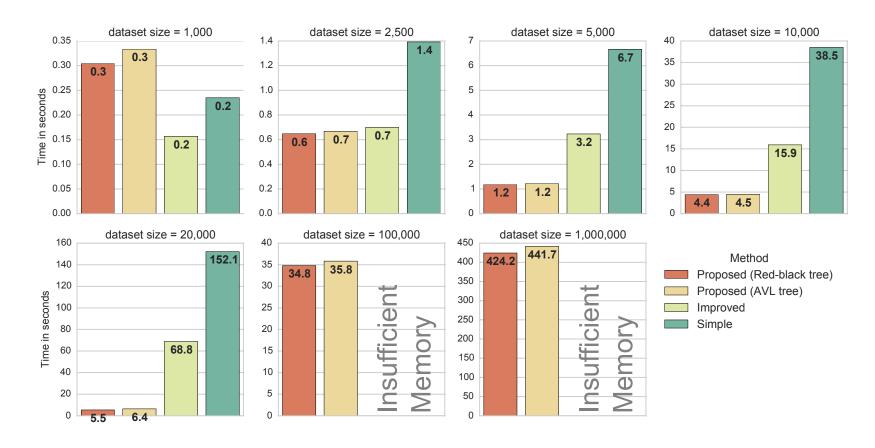
Time complexity:

$$[O(n \log n) + O(nd + d + n \log n)] \cdot \bar{N}_{CG} \cdot N_{Newton}$$

• Space complexity: O(n)

No need to explicitly construct all pairwise differences.

Training Time (in seconds)



Extensions

- Non-linear Survival SVM
 - Transform data with Kernel PCA before training in primal (Chapelle & Keerthi, 2009).
- Hybrid ranking-regression
 - Ranking approach cannot be used to predict exact time of event.
 - Use objective function that combines ranking and regression loss.

Conclusion

- Time complexity could be lowered from $O(dn^4)$ to $[O(n\log n) + O(nd + d + n\log n)] \cdot \bar{N}_{\rm CG} \cdot N_{\rm Newton}$
- Space complexity reduces from $O(n^2)$ to O(n)
- Same optimization scheme can be applied to non-linear Survival SVM and hybrid ranking-regression.
- Implementation is available online at https://github.com/tum-camp.

Bibliography

- Airola et al.: Training linear ranking SVMs in linearithmic time using red-black trees. Pattern Recogn. Lett. 32(9), 1328–36 (2011)
- Chapelle et al.: Efficient algorithms for ranking with SVMs. Information Retrieval 13(3), 201–5 (2009)
- Evers et al.: Sparse kernel methods for high-dimensional survival data. Bioinformatics 24(14), 1632–8 (2008)
- Herbrich et al.: Large Margin Rank Boundaries for Ordinal Regression. In: Advances in Large Margin Classifiers. pp. 115–32. (2000)
- Lee et al.: Large-Scale Linear RankSVM. Neural Comput. 26(4), 781–817 (2014)
- Van Belle et al.: Support Vector Machines for Survival Analysis. In: Proc. 3rd Int. Conf. Comput. Intell. Med. Healthc. pp. 1–8 (2007)
- Van Belle et al.: Survival SVM: a practical scalable algorithm. In: Proc. of 16th European Symposium on Artificial Neural Networks. pp. 89–94 (2008)

