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Survival Analysis

● Objective: to establish a connection between covariates 
and the time between the start of the study and an event.

● Possible formulation: Rank subjects according to 
observed survival time.

● Usually, parts of survival data can only be partially 
observed – they are censored.

● Survival data consists of n triplets:
–                    a d-dimensional feature vector

–                    time of event or time of censoring

–                    event indicator
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Right Censoring
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● Only events that occur while the study is running can be 
recorded (records are uncensored).

● For individuals that remained event-free during the study 
period, it is unknown whether an event has or has not 
occurred after the study ended (records are right censored).
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Overview

● Problem:
– Naive training algorithms for linear Survival Support Vector 

Machines require O(n4) time and O(n2) space (Van Belle et 
al., 2007; Evers et al., 2008).

● Proposed Solution:
– Perform optimization in the primal using truncated Newton 

optimization.

– Use order statistics trees to lower time and space 
requirements.

– Approach extends to hybrid ranking-regression objective 
function as well as non-linear Survival SVM.
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Survival SVM

● Objective function depends on a quadratic number of 
pairwise comparisons

● Closely related to RankSVM (Herbrich et al., 2000), 
where

● Ties in survival time are not common, i.e., number of 
relevance levels r for RankSVM is O(n).
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Related Work – Survival SVM

● Van Belle et al., 2007: Explicitly construct all pairwise 
comparisons of samples to transform ranking problem 
into classification problem and use standard dual SVM 
solver.

● Van Belle et al., 2008: Reduces number of samples n by 
clustering data according to survival times using k-
nearest neighbor search.
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Related Work – Rank SVM

● Airola et al., 2011: Combines cutting plane optimization 
with red-black tree based approach to subgradient 
calculations.

● Lee et al., 2014: Combines truncated Newton 
optimization with order statistics trees to compute 
gradient and Hessian.
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The Objective Function (1)

●        is a             sparse matrix with each row having one 
entry that is 1, one entry that is -1, and the remainder all 
zeros.

●      denotes the number of support vectors:
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The Objective Function (2)

●        is a             sparse matrix with each row having one entry 
that is 1, one entry that is -1, and the remainder all zeros.

●

● Example:
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Truncated Newton Optimization

● Problem: Explicitly storing the Hessian matrix can be 
prohibitive for high-dimensional survival data.

● Proposed Solution:
– Optimization in primal.

– Avoid constructing Hessian matrix by using truncated 
Newton optimization, which only requires computation of 
Hessian-vector product:
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Calculation of Search Direction (1)

● In each iteration of Newton's method,       has to be 
recomputed due to its dependency on
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Calculation of Search Direction (2)

● In each iteration of Newton's method,       has to be 
recomputed due to its dependency on
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Calculation of Search Direction (3)

●                    can compactly be expressed as:
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Calculation of Search Direction (4)

● Assume that                             have been computed.

● Hessian-vector product can be computed in                 
instead of
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Order Statistics Trees

● Problem: Order depends on survival times and predicted 
scores

● Solution:
– Sort survival data according to          .

– Incrementally add    and          to an order statistics tree 
(balanced binary search tree).
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Efficient Hessian-vector Product

● Before: Hessian-vector product required

● Now: After sorting according to predicted scores,
                            can be obtained in 

● Hessian-vector product does not require constructing 
matrix of size           anymore

● Hessian-vector product requires
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Overall Complexity

● Time complexity:

● Space complexity:

No need to explicitly construct all pairwise differences.
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Training Time (in seconds)
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Extensions

● Non-linear Survival SVM
– Transform data with Kernel PCA before training in primal 

(Chapelle & Keerthi, 2009).

● Hybrid ranking-regression
– Ranking approach cannot be used to predict exact time of 

event.

– Use objective function that combines ranking and 
regression loss.
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Conclusion

● Time complexity could be lowered from            to

● Space complexity reduces from           to 

● Same optimization scheme can be applied to non-linear 

Survival SVM and hybrid ranking-regression.

● Implementation is available online at 

https://github.com/tum-camp.
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