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Overview Truncated Newton Optimization

«Problem: Training a Survival SVM by converting the ranking « Objective function:
problem into a classification problem and using a standard P (i) |y >y AD: = 1}
dual SVM solver requires O(dn*)time and O(n?) space.’ RERE AR AR BI= e
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- Current RankSVM solvers? require O(nd + nlogn + nlogr + d). flw)=gw w+ 5 MZE:P max(0,1 — (w” z; — w” z;))
«Solution: 1 |
o . . = Sw w+ 2 (py + w" X7 (A} Ay Xw - 247))
.Optimization in the primal using truncated Newton 2 2
optimization.
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.Use order statistics trees to lower complexities. L by, <ys Aog=1A W Ts W T Lo ()
. . . . Av)eg=< -1 ify,>y; \Nog =1 Nwrx, >w x, — 1, 2
.Conclusion: Requires O(n) space and has time complexity S . lsiq 7/ ! (2)
[O(nlogn) _I_O(TLd_I_d_I_nlOgn)] - Noa - NNewton - N
where s,g € {1,....,n}h, ke {l,...,pyu}
- = g [ o . Example: P = {(1,2);(1,3);(2,3); (1,2): (1.3)}
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.Same optimization scheme can be applied to: « Do not store Hessian, but only compute Hessian-vector

product Hv =v +~vX1TA! A, Xw.
«Non-linear Survival SVM: Transform data with Kernel PCA
before training in primal.®

« Hybrid ranking-regression to predict exact time of event. Usmg Order Statistics Trees

: - « Matrix A, A, has size O(n?)and has to be recomputed in each
Survival Analysis iteration, which would be impractical. Instead we compactly
express one entry as

« Objective: to establish a connection between a set of

. . . —|— — .f C
features and the time of an event (survival time). Lo+l b=,

(AzAw)@"j — < —1 if i # 7, and j € SV:_ or 1 € SVJ_,
« Patients that remain event-free during the study-period are 0 else.
right censored, because it is unknown whether an event has
or has not occurred after the study ended. Only partial SV ={slys>yiNdi =1 Nw x, <w’ x; + 1} L7 =[SV
information about their survival is available. SV, ={s|ys <yiNds =1 Aw'zs >w'z; — 1} I7 =[SV,
A - Los A - Lost — . Sets can be updated incrementally by adding y; and w! z; to
B . . e reom an order statistics tree (balanced binary search tree).
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Survival Support Vector Machine

« Survival analysis can be formulated as a ranking problem,
with the objective to predict the order of patients according
to their survival time.

« Survival SVM' is closely related to RankSVM*, but in addition
accounts for right censoring:. subject with smaller survival
time must always be uncensored.

« Number of relevance levels (here: survival times) are of the
order of number of patients.

« Survival data consists of a feature vector (z; € R?), the time of
an event/censoring (y; > 0), and an event indicator (§; € {0,1}).
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